- Moderator
- #281
- 8 902
- 25 793
dzisiaj 06:59
Sztuczna inteligencja staje się coraz bardziej powszechna. Wiele osób zadaje sobie pytanie: czy będzie ona zagrożeniem, czy może szansą na rozwój ludzkości? Technologia już dzisiaj wykorzystawna jest do tłumaczeń czy obsługi rozmaitych urządzeń. Pewnym jest, że będzie się rozwijać i rozszerzać zakres działań sztucznej inteligencji, ale nie oznacza to, że ludzie pójdą w odstawkę. Prof. Henrique Schneider, wykładający ekonomię na Uniwersytecie Nauk Stosowanych Nordakademie w Niemczech, analizuje to fascynujące zjawisko.
- Istnieje bardzo wyraźny rozdział między zadaniami ludzi i sztucznej inteligencji
- Dzięki technologii wszystkie osoby będą mogły skupić się na tym, co jako jednostki wykonują najlepiej
- Maszyny są lepsze od ludzi w prognozowaniu przyszłości. Za to ludzie dużo lepiej od sztucznej inteligencji podejmują decyzje na podstawie otrzymanych danych
- Kwestią otwartą jest, czy rządy, społeczeństwa i instytucje będą gotowe na dopuszczenie technologii do codziennych obowiązków
- Tekst publikujemy dzięki uprzejmości Geopolitical Intelligence Services
Ekonomiści wczesnej generacji, czyli klasyczni, byli szczególnie zainteresowani tym, w jaki sposób podział pracy na podstawie swobodnie wybranej specjalizacji umożliwia ludziom czerpanie korzyści z ogólnospołecznego łańcucha tworzenia wartości. Ojciec nowoczesnej ekonomii, Adam Smith (1723-1790), stwierdził, że specjalizacja napędza nadwyżki i innowacje. David Ricardo (1772-1823) zauważył, że nawet najmniej produktywni członkowie społeczeństwa mogą czerpać korzyści ze specjalizacji. Nawet złowrogi Karol Marks (1818-1883) dostrzegał zalety podziału pracy. Jego błędne zastrzeżenia dotyczyły tego, że kapitalista zatrzymuje korzyści płynące z podziału pracy, zamiast pozwolić im płynąć do wyspecjalizowanego pracownika.
Specjalizacja nie ogranicza się jednak tylko do ludzi. Im bardziej technologia przenika wymianę gospodarczą, tym bardziej następuje podział pracy między ludzi i technologię. Zamiast tkać ręcznie, większość producentów tekstyliów wykorzystuje do tego celu maszyny. Maszyna wytwarza tkaninę, która została zaprojektowana i skonstruowana przez ludzi. Zamiast wykonywać żmudne obliczenia samodzielnie, pozwalamy kalkulatorowi wykonywać działania arytmetyczne na modelach opracowanych przez nas. Terminal Bloomberg uwolnił człowieka-analityka od pisania notowań na tablicy kredowej, aby mógł się skupić na podejmowaniu decyzji o sposobie inwestowania. Krótko mówiąc, wykorzystanie technologii polega na znalezieniu dla niej specjalistycznego zastosowania w całym łańcuchu tworzenia wartości.
Technologia staje się coraz tańsza w użyciu, co sprawia, że ma coraz większe znaczenie ekonomiczne.
Postęp usprawnia podział pracy między ludzi i maszyny. Dzięki temu każdy może jeszcze bardziej wyspecjalizować się w tym, co robi najlepiej. A to przynosi największe korzyści nam samym. Taki podział pracy pozwala tworzyć nowości, produkować więcej towarów i podnosić jakość. Dzięki temu, że ludzie mogą się skupić na tym, co robią najlepiej, specjalizacja i podział pracy zwiększają ich produktywność, a co za tym idzie ich dochody i jakość życia.
Coraz tańsza sztuczna inteligencja
W jaki sposób sztuczna inteligencja (SI) wpisuje się w ten obraz? Gdy ceny maszyn tkackich, kalkulatorów i komputerów spadły, zostały one włączone do podziału pracy. To samo dzieje się z SI. Technologia ta staje się coraz tańsza w użyciu, co sprawia, że ma coraz większe znaczenie gospodarcze. I choć sztuczna inteligencja czyni postępy w różnych zastosowaniach, to w jednej dziedzinie jest szczególnie przydatna. W prognozowaniu.
Obecnie prognozowanie jest kosztowne, ponieważ wymaga gromadzenia ogromnej liczby danych, analizowania ich, identyfikowania wzorców i obliczania możliwości. Ponieważ jednak SI coraz częściej wykorzystuje się do wykonywania dokładnie tych zadań, przewidywanie staje się mniej żmudne i tańsze. Jeśli dzięki SI prognozowanie nie będzie już tak kosztowne, zakres jej zastosowania poszerzy się, a wykorzystanie będzie coraz intensywniejsze.
Przewidywanie to proces uzupełniania brakujących informacji. Wykorzystuje dostępne dane do znajdowania wzorców w celu generowania nowych informacji i obliczania prawdopodobieństwa, że wzorce te będą się powtarzać lub zmieniać. Przewidywanie jest wykorzystywane w tradycyjnych zadaniach, takich jak zarządzanie zapasami i prognozowanie popytu. Co ważniejsze, ponieważ staje się coraz tańsze, jest wykorzystywane do przedsięwzięć, które do niedawna nie były zagadnieniami związanymi z przewidywaniem. To na przykład: prowadzenie samochodu, tłumaczenie czy opieka medyczna.
Spadek kosztów przewidywania przez sztuczną inteligencję będzie miał wpływ na wartość innych rzeczy. Tańsza sztuczna inteligencja zwiększa wartość jak danych, umożliwia osąd i działanie, ale zmniejsza wartość ich substytutu, jakim jest przewidywanie przez człowieka.
W tym mylą się ludzie
W kontekście prognozowania maszyny i ludzie mają różne mocne oraz słabe strony. Ludzie, w tym profesjonalni eksperci, w pewnych warunkach dokonują złych przewidywań: często nie uwzględniają istotnych informacji i nie biorą pod uwagę właściwości statystycznych. W miarę doskonalenia i obniżania kosztów obsługi maszyn do prognozowania przedsiębiorstwa będą prawdopodobnie dostosowywać podział pracy między ludzi i maszyny.
Te drugie w propgnozowaniu są lepsze od ludzi, bo uwzględniają złożone interakcje pomiędzy różnymi wskaźnikami, zwłaszcza w przypadku dużej liczby danych. W miarę jak rośnie liczba wymiarów takich interakcji, zdolność człowieka do formułowania trafnych prognoz maleje, zwłaszcza w porównaniu z maszynami. Jednak ludzie są często lepsi od maszyn, gdy ich zrozumienie procesu generowania danych daje przewagę w przewidywaniu, zwłaszcza w przypadku ograniczonej liczby informacji. Ludzie lepiej radzą sobie z niepewnością i znacznie lepiej radzą sobie z podejmowaniem decyzji na podstawie przewidywań.
Przewidywanie jest kluczowym składnikiem procesu podejmowania decyzji w warunkach niepewności, a proces podejmowania decyzji jest wszechobecny w gospodarce i życiu społecznym. Przewidywanie nie jest jednak decyzją, a jedynie jej częścią składową, a kolejnym istotnym elementem jest osąd. I tu właśnie tkwi przewaga człowieka, w obszarze specjalizacji, jakim jest osąd ludzki. Ponieważ maszyny do przewidywania są coraz lepsze, szybsze i tańsze, wartość ludzkiego osądu będzie rosła.
Rozłożenie decyzji na części składowe pomaga lepiej zrozumieć wpływ maszyn prognozujących na wartość ludzi i innych aktywów. Wartość substytutów sztucznej inteligencji, czyli prognoz wykonanych przez człowieka, będzie spadać. Wzrośnie natomiast wartość uzupełnień prognozowania, takich jak ludzkie umiejętności oceny sytuacji.
Najważniejszy jest osąd
Osąd polega na określeniu względnej zapłaty związanej z każdym możliwym wynikiem decyzji, w tym tej związanej z decyzją prawidłową i tej błędnej. Osąd wymaga określenia celu, do którego się dąży, i jest niezbędnym etapem procesu podejmowania decyzji. W miarę jak maszyny prognozujące będą coraz lepsze, szybsze i tańsze, wartość ludzkiego osądu będzie rosła, ponieważ społeczeństwo będzie go bardziej potrzebowało i będzie go bardziej cenić lub też jego cena będzie wyższa. Ludzie mogą być bardziej skłonni do podejmowania wysiłku i stosowania osądu w przypadkach, w których wcześniej powstrzymywali się od podejmowania decyzji (np. akceptując domyślną sytuację lub ustawienia).
Jakość przewidywań sztucznej inteligencji będzie najprawdopodobniej rosła w szybszym tempie, niż będzie spadała cena tego typu urządzeń i programów.
Dlaczego ludzie są lepsi w ocenianiu niż SI? Podczas gdy maszyna może uwzględnić więcej danych, a więc i więcej wzorców, aby dokonać prognozy, człowiek kieruje się przeczuciem. Ludzie potrafią radzić sobie z lukami w zbiorze danych i wypełniać je na podstawie intuicji, a tego nie potrafi żadna sztuczna inteligencja. Ponadto ludzie są dobrzy w radzeniu sobie i reagowaniu na "nieznane niewiadome" lub "czarne łabędzie" (pojęcie z zakresu ekonomii, to nieregularne wydarzenie o wielkim znaczeniu dla gospodarki i świata, którego obserwatorzy nie byli w stanie przewidzieć – przyp. red). Prawdopodobnie ten zestaw umiejętności pochodzi z dwóch różnych źródeł. Po pierwsze, ludzie postrzegają niepewność jako intuicję lub szansę prowadzącą do możliwości. Po drugie, ludzie muszą brać odpowiedzialność za swoje osądy, co doskonali ich zdolność podejmowania decyzji.
Podsumowanie
O SI najlepiej myśleć w kategoriach tego, jak jest wykorzystywana i co robi, a nie czym jest. Obecnie jednym z jej najważniejszych zastosowań jest przewidywanie. Im tańsze staną się prognozy sztucznej inteligencji oraz im więcej i lepszych prognoz będzie ona dokonywać, tym bardziej owa technologia będzie mogła być wykorzystywana przez podmioty gospodarcze. Może być użyta do wyspecjalizowanych zadań w procesie przewidywania, dzięki czemu ludzie będą mogli specjalizować się w ocenie i podejmowaniu decyzji. Takie włączenie SI do łańcucha tworzenia wartości, wykorzystujące jej specjalizację i podział pracy z ludźmi, jest niezwykle korzystne.
Pozwalając człowiekowi skupić się na tym, co robi najlepiej, sztuczna inteligencja wyspecjalizowana w przewidywaniu zwiększa skuteczność i wydajność człowieka, a w rezultacie poprawia jego dochody oraz jakość życia.
Z powyższego rozumowania wyłaniają się cztery ogólne scenariusze.
Co przyniesie przyszłość?
- Pierwszy, podstawowy scenariusz
Sztuczna inteligencja w dalszym ciągu zwiększa swoje możliwości przewidywania, czyniąc je lepszymi i tańszymi. Takiego wyniku można by się spodziewać, gdyby utrzymały się obecne trendy w zakresie inwestycji i badań związanych z SI. Jakość przewidywań SI będzie najprawdopodobniej rosła szybciej, niż będzie spadać jej cena. W rezultacie można oczekiwać, że tempo przyjmowania się SI wśród podmiotów gospodarczych będzie niższe niż tempo wzrostu możliwości tej technologii.
- Scenariusz drugi
Ten scenariusz stanowi rozwinięcie pierwszego. W tym scenariuszu gospodarka będzie włączać SI do różnych działań, co zwiększy stopień specjalizacji. Maszyny będą specjalizować się w prognozowaniu, a ludzie w wydawaniu sądów i podejmowaniu decyzji. Dzięki zwiększonemu podziałowi pracy w ramach sojuszu ludzkie podejmowanie decyzji stanie się lepsze i bardziej wartościowe. Wzrośnie również zapotrzebowanie na ten proces. Prawdopodobnie wzrost jakości procesu decyzyjnego będzie szybszy niż wzrost jego wyceny. Pod jakimi warunkami może się zrealizować ten scenariusz? Zależy to od stopnia swobody, jaką gospodarki i indywidualni przedsiębiorcy będą mieli w rozwijaniu oraz wdrażaniu technologii.
- Trzeci scenariusz
Ten scenariusz również opiera się na pierwszym. W jego ramach, przynajmniej w krótkiej i średniej perspektywie, specjalizacja i podział pracy mogą nie nastąpić. Przyczyny tego stanu rzeczy mogą być różne. Jeśli podmioty gospodarcze będą postrzegać SI jako zagrożenie, a nie atut, mogą próbować z nią konkurować. Zamiast pozwolić na specjalizację zgodnie z różnymi korzyściami, ludzie skierowaliby swoje zdolności do mniej produktywnych zadań, takich jak zbieranie danych i przewidywanie. Inną możliwą przyczyną takiego scenariusza byłyby regulacje prawne uniemożliwiające wykorzystanie sztucznej inteligencji lub ograniczające jej funkcje. Kolejnym czynnikiem wywołującym ten scenariusz byłyby również regulacje uniemożliwiające lub zmniejszające korzyści ekonomiczne wynikające z wykorzystania SI. Na przykład poprzez uniemożliwienie inwestorom jej finansowania lub zatrzymywania przychodów z jej wykorzystania.
- Scenariusz czwarty
Ten scenariusz nie jest powiązany z żadnym z trzech poprzednich. W tym przypadku zakres działania sztucznej inteligencji całkowicie się zmienia i przenosi się z przewidywania na inne zastosowania, np. czujniki lub robotykę. W tym scenariuszu SI nadal może być wykorzystywana na korzyść lub niekorzyść podmiotów gospodarczych; może nawet prowadzić do specjalizacji i podziału pracy. Jednak w tym wariancie specjalizacja nie będzie przebiegać na zasadzie przewidywania maszyn i podejmowania decyzji przez człowieka, lecz będzie wynikać z innych zastosowań. Ten scenariusz zakłada zarówno plusy, jak i minusy. Mógłby się zrealizować, gdyby zyski z prognozowania znacznie spadły lub gdyby inne zastosowania sztucznej inteligencji stawały się tańsze w szybszym tempie, co ułatwiłoby ich dopasowanie do łańcucha wartości dodanej.
Henrique Schneider jest głównym ekonomistą Szwajcarskiej Federacji Małych i Średnich Przedsiębiorstw, a także profesorem ekonomii na Uniwersytecie Nauk Stosowanych Nordakademie w Niemczech. Jest członkiem wielu rad nadzorczych w Szwajcarii, Azji i w Organizacji Narodów Zjednoczonych.